__Source File For this tutorial:__ [Click Here](/src/Markdown-Tutorial.md)
## Example 1:
**Markdown Code:**
~~~md
_Italic_ *Italic*
__Bold__ **Bold**
Blue
_Red and Italic_
___Red and Italic and Bold___
**_Red and Italic and Bold_**
~~~
**Output:**
_Italic_ *Italic*
__Bold__ **Bold**
Blue
_Red and Italic_
___Red and Italic and Bold___
**_Red and Italic and Bold_**
## Example 2:
**Markdown Code:**
~~~md
~~Strickout~~
Underline
创建脚注格式类似这样 [^Footnote]。
[^Footnote]: Here is footnote
output "*" \* \_
~~~
**Output**
~~Strickout~~
Underline
创建脚注格式类似这样 [^Footnote]。
[^Footnote]: Here is footnote
output "*" \* \_
## Example 3
**Markdown Code:**
~~~md
__Here is check list__
- [ ] my
- [ ] check
- [x] list
__Here is Emoji__
:blush:
:smile:
:angry:
:cry:
:joy:
>Block
>1. Block 1
>2. Blokc 2
~~~
**Output**
__Here is check list__
- [ ] my
- [ ] check
- [x] list
__Here is Emoji__
:blush:
:smile:
:angry:
:cry:
:joy:
>Block
>1. Block 1
>2. Blokc 2
## Example 4
**Markdown Code:**
**Output**
Here is code `function()`
~~~
Code Block
~~~
~~~C
int text= C Code Block
~~~
|Col1 |Col2 |Col3|
|---|---|---|
|a|b|c|
|左对齐(left) |居中(center) |右对齐(right)|默认左对齐(default)|
|:---|:---:|---:|---|
|a|b|c|d|
- list 1
- list 2
- list 3
+ list 1
+ list 2
+ list 3
## Example 5
**Markdown Code:**
~~~md
[Here is a link](https://google.com/)
[1]: http://static.runoob.com/images/runoob-logo.png
Embeded HTML
Hearder
Hearder
使用 Ctrl+Alt+Del 重启电脑
## math formula: Need to be loaded on browser
$$
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\
\end{vmatrix}
${$tep1}{\style{visibility:hidden}{(x+1)(x+1)}}
$$
~~~
**Output**
[Here is a link](https://google.com/)
[1]: http://static.runoob.com/images/runoob-logo.png
Embeded HTML
Hearder
Hearder
使用 Ctrl+Alt+Del 重启电脑
## math formula: Need to be loaded on browser
$$
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\
\end{vmatrix}
${$tep1}{\style{visibility:hidden}{(x+1)(x+1)}}
$$